Endovascular Mesenteric Arterial Reconstruction
Tips and Techniques

Wayne W. Zhang, MD, FACS

Professor
Division of Vascular and Endovascular Surgery
University of Washington

Chief of Vascular Surgery
Puget Sound VA Health Care System

June 15, 2018
Seattle, WA
DISCLOSURE

Wayne Zhang, MD

• No relevant financial relationship reported
Etiologies

Chronic mesenteric artery occlusion

- Atherosclerosis
 - 95%
- Rarely
 - Takayasu’s
 - Buerger’s
 - Radiation
 - FMD
Diagnosis
Diagnosis

- Angiography
 - Diagnostic and therapeutic
 - Invasive
 - Procedure related complications
 - Contrast related complications
Diagnosis

• Angiography
 – Diagnostic and therapeutic
 – Invasive
 – Procedure related complications
 – Contrast related complications
Table I. Baseline characteristics of patients undergoing angioplasty, with or without stenting, compared with surgical repair for chronic and acute mesenteric ischemia from 2000 to 2006

<table>
<thead>
<tr>
<th>Variable</th>
<th>PTSA/S</th>
<th>Surgery*</th>
<th>p^b</th>
<th>PTSA/S</th>
<th>Surgery*</th>
<th>p^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic mesenteric ischemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients, No. (%)</td>
<td>3455 (61.9)</td>
<td>2128 (38.1)</td>
<td>...</td>
<td>1857 (35.5)</td>
<td>3380 (64.5)</td>
<td>...</td>
</tr>
<tr>
<td>Age, median (range), y</td>
<td>74 (24-97)</td>
<td>68 (29-99)</td>
<td><.001</td>
<td>72 (26-96)</td>
<td>72 (21-99)</td>
<td>.53</td>
</tr>
<tr>
<td><60, %</td>
<td>15</td>
<td>32</td>
<td><.001</td>
<td>24</td>
<td>26</td>
<td>.34</td>
</tr>
<tr>
<td>60-69, %</td>
<td>23</td>
<td>28</td>
<td><.05</td>
<td>25</td>
<td>22</td>
<td>.36</td>
</tr>
<tr>
<td>70-79, %</td>
<td>37</td>
<td>30</td>
<td><.01</td>
<td>31</td>
<td>33</td>
<td>.62</td>
</tr>
<tr>
<td>≥80, %</td>
<td>25</td>
<td>11</td>
<td><.001</td>
<td>21</td>
<td>19</td>
<td>.52</td>
</tr>
<tr>
<td>Female, %</td>
<td>74</td>
<td>79</td>
<td><.05</td>
<td>70</td>
<td>66</td>
<td>.14</td>
</tr>
<tr>
<td>Comorbidities, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>66</td>
<td>51</td>
<td><.001</td>
<td>56</td>
<td>46</td>
<td><.01</td>
</tr>
<tr>
<td>PVD</td>
<td>40</td>
<td>32</td>
<td><.01</td>
<td>33</td>
<td>13</td>
<td><.001</td>
</tr>
<tr>
<td>CAD</td>
<td>39</td>
<td>26</td>
<td><.001</td>
<td>34</td>
<td>19</td>
<td><.001</td>
</tr>
<tr>
<td>AFib/flutter</td>
<td>16.5</td>
<td>14.9</td>
<td>.49</td>
<td>23.6</td>
<td>38.7</td>
<td><.001</td>
</tr>
<tr>
<td>Prior MI</td>
<td>8.3</td>
<td>6.0</td>
<td>.17</td>
<td>6.4</td>
<td>4.7</td>
<td>.23</td>
</tr>
<tr>
<td>CHF</td>
<td>17.5</td>
<td>10.5</td>
<td><.01</td>
<td>22.1</td>
<td>22.6</td>
<td>.85</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>19</td>
<td>12</td>
<td><.01</td>
<td>18</td>
<td>17</td>
<td>.73</td>
</tr>
<tr>
<td>COPD</td>
<td>25</td>
<td>27</td>
<td>.40</td>
<td>29</td>
<td>23</td>
<td>.06</td>
</tr>
<tr>
<td>Chronic renal disease</td>
<td>6.3</td>
<td>1.2</td>
<td><.001</td>
<td>9.8</td>
<td>3.5</td>
<td><.001</td>
</tr>
<tr>
<td>CVD</td>
<td>6.9</td>
<td>7.7</td>
<td>.61</td>
<td>4.7</td>
<td>5.9</td>
<td>.41</td>
</tr>
<tr>
<td>Charlson, mean ± SD</td>
<td>1.3 ± 1.1</td>
<td>1.0 ± 1.0</td>
<td><.001</td>
<td>1.4 ± 1.3</td>
<td>0.9 ± 1.1</td>
<td><.001</td>
</tr>
<tr>
<td>Bowel resection, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*AFib, atrial fibrillation; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CVD, cerebrovascular disease; MI, myocardial infarction; PTSA/S, percutaneous transluminal angioplasty, with or without stenting; PVD, peripheral vascular disease; SD, standard deviation.

*Surgery includes bypass, endarterectomy, or embolecotomy.

*p Statistical significance set at P < .01.
The graph shows the number of procedures over the years from 1988 to 2006. The categories include:

- **All Repairs**
- **Open Repairs**
- **PTA/Stent**

The number of procedures for each category shows an increasing trend over the years with a significant increase in recent years.
Endovascular Reconstruction

- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management
Endovascular Reconstruction

- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management
Endovascular Reconstruction

Indications

• High grade mesenteric artery stenosis or total occlusion
 – Symptomatic
 – Asymptomatic
 > 2-vessel significant disease

> 30% of the patients will develop bowel infarct within 2-3 years
Endovascular Reconstruction

- When to intervene
- **How many vessels need to be treated**
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management
Endovascular Reconstruction

- **Revascularization**
 - Reportedly 1.4-1.8 vessels

- **Single-Vessel** revascularization
 - Adequate to relieve symptoms in most of patients

- **Two-vessel** revascularization
 - Lower risk of symptom recurrence and secondary re-intervention
Endovascular Reconstruction

• **Revascularization**
 – Reportedly 1.4-1.8 vessels

• **Single-Vessel** revascularization
 – Adequate to relieve symptoms in most of patients

• **Two-vessel** revascularization
 – Lower risk of symptom recurrence and secondary re-intervention
Endovascular Reconstruction

• When to intervene
• How many vessels need to be treated
• **Access and Crossing lesions**
• PTA vs. Stenting
• Post-stenting medical management
Endovascular Reconstruction

- Access
 - Brachial
 - Femoral
Endovascular Reconstruction

- Brachial access if sharp angulation
- Angle sheath and catheter
- Crossing catheter
Endovascular Reconstruction

- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stentung medical management
Endovascular Reconstruction

- Balloon angioplasty (PTA) alone
 - 15%
- Primary stenting
 - 85%
 - Less reintervention
 - Balloon expendable stent
 - Accurate
 - May post-dilate to a larger size if needed
 - May need covered stent if instent re-stenosis
Endovascular Reconstruction

- Balloon angioplasty (PTA) alone
 - 15%
- Primary stenting
 - 85%
 - Less reintervention
 - Balloon expendable stent
 - Accurate
 - May post-dilate to a larger size if needed
 - May need covered stent if instent re-stenosis
Endovascular Reconstruction

- Balloon angioplasty (PTA) alone - 15%
- **Primary stenting** - 85%
 - Less reintervention
 - Balloon expendable stent
 - Accurate
 - May post-dilate to a larger size if needed
 - May need covered stent if instent re-stenosis
Endovascular Reconstruction

- Balloon angioplasty (PTA) alone – 15%
- Primary stenting – 85%
 - Less reintervention
 - Balloon expendable stent
 - Accurate
 - May post-dilate to a larger size if needed
 - May need covered stent if instent re-stenosis
Endovascular Reconstruction

- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management
Endovascular Reconstruction

- Post-procedure medications
 - Clopidogrel: 6 weeks
 - ASA: life time
Endovascular Reconstruction

• **Indications** for endovascular treatment of CMI
 • Symptomatic
 • Asymptomatic with 2- or 3-vessel significant disease
• One vessel PTA/Stenting is adequate
 • Two-vessel treatment has better long-term outcomes
• Primary stenting is recommended
• Balloon expendable stent is preferred
• Post-stenting antiplatelet
 • Clopidogrel 6 weeks
 • ASA life time
Summary

- **Indications** for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time
Summary

- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time
Summary

• Indications for endovascular treatment of CMI
 • Symptomatic
 • Asymptomatic with 2- or 3-vessel significant disease

• One vessel PTA/Stenting is adequate
 • Two-vessel treatment has better long-term outcomes

• Primary stenting is recommended
• Balloon expendable stent is preferred
• Post-stenting antiplatelet
 • Clopidogrel 6 weeks
 • ASA life time
Summary

- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- **Primary stenting** is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time
• Indications for endovascular treatment of CMI
 • Symptomatic
 • Asymptomatic with 2- or 3-vessel significant disease
• One vessel PTA/Stenting is adequate
 • Two-vessel treatment has better long-term outcomes
• Primary stenting is recommended
• Balloon expendable stent is preferred
• Post-stenting antiplatelet
 • Clopidogrel 6 weeks
 • ASA life time
Summary

- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time
References

Thank you