Endovascular Mesenteric Arterial Reconstruction Tips and Techniques

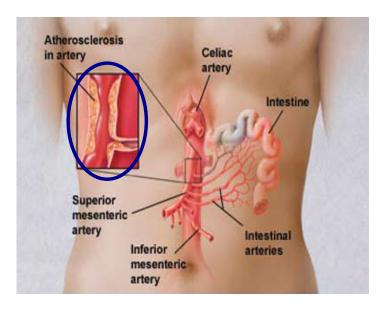
Wayne W. Zhang, MD, FACS

Professor
Division of Vascular and Endovascular Surgery
University of Washington

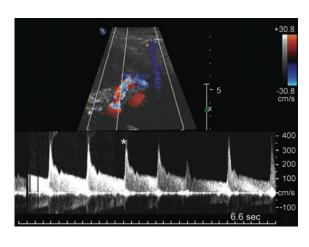
Chief of Vascular Surgery
Puget Sound VA Health Care System

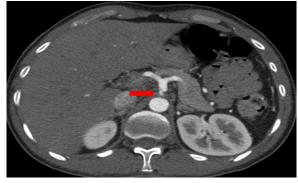
June 15, 2018 Seattle, WA

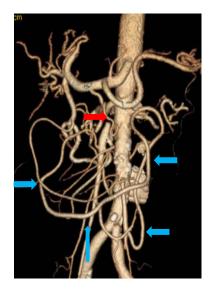
DISCLOSURE Wayne Zhang, MD


No relevant financial relationship reported

Etiologies


Chronic mesenteric artery occlusion


- Atherosclerosis
 - 95%
- Rarely
 - Takayasu's
 - Buerger's
 - Radiation
 - FMD



Diagnosis



PNEC-SEATTLE.ORG

Diagnosis

- Angiography
 - Diagnostic and therapeutic
 - Invasive
 - Procedure related complications
 - Contrast related complications

Diagnosis

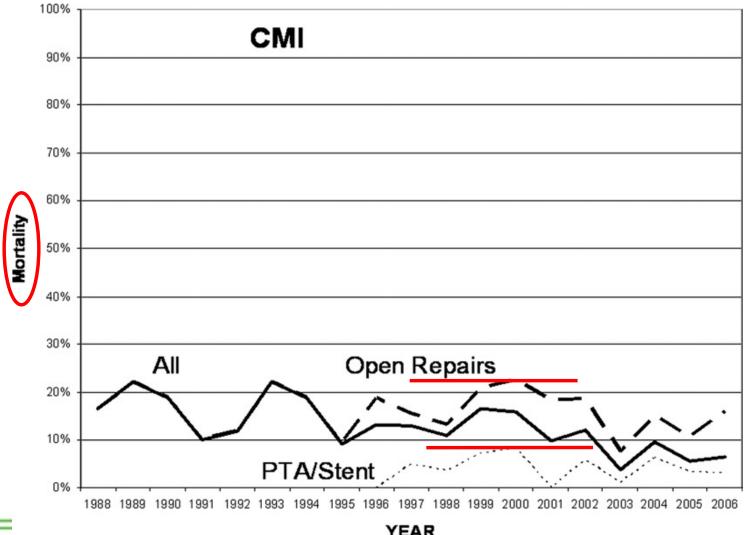
- Angiography
 - Diagnostic and therapeutic
 - Invasive
 - Procedure related complications
 - Contrast related comp

Table I. Baseline characteristics of patients undergoing angioplasty, with or without stenting, compared with surgical repair for chronic and acute mesenteric ischemia from 2000 to 2006

Variable	Chronic mesenteric ischemia			Acute mesenteric ischemia		
	PTSA/S	Surgery	\mathbf{P}^{b}	PTSA/S	Surgery	\mathbf{P}^{b}
Patients, No. (%)	3455 (61.9)	2128 (38.1)		1857 (35.5)	3380 (64.5)	
Age, median (range), y	74 (24-97)	08 (29-99)	<.001	72 (26-96)	72 (21-99)	.53
<60, %	15	32	<.001	24	26	.34
60-69, %	23	28	<.05	25	22	.36
70-79, %	37	30	<.01	31	33	.62
≥80, %	25	11	<.001	21	19	.52
Female, %	74	79	<.05	70	66	.14
Comorbidities, %						
Hypertension	66	51	<.001	56	46	<.01
PVD	40	32	<.01	33	13	<.001
CAD	39	26	<.001	34	19	<.001
AFib/flutter	16.5	14.9	.49	23.6	38.7	<.001
Prior MI	8.3	6.0	.17	6.4	4.7	.23
CHF	17.5	10.5	<.01	22.1	22.6	.85
Diabetes mellitus	19	12	<.01	18	17	.73
COPD	25	27	.40	29	23	.06
Chronic renal disease	6.3	1.2	<.001	9.8	3.5	<.001
CVD	6.9	7.7	.61	4.7	5.9	.41
Charlson, mean ± SD	1.3 ± 1.1	1.0 ± 1.0	<.001	1.4 ± 1.3	0.9 ± 1.1	<.001
Bowel resection, %	2.82	#0#s5	#0.5×5	28.1	47.8	<.001

AFib, Atrial fibrillation; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CVD, cerebrovascular disease; MI, myocardial infarction; PTA/S, percutaneous transluminal angioplasty, with or without stenting; PVD, peripheral vascular disease; SD, standard deviation.

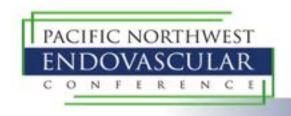
^bStatistical significance set at P < .01.


Nationwide Inpatient Sample

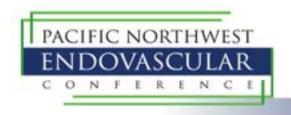
Schermerhorn et al. J Vasc Surg 2009;49:1472-9.

PNEC-SEATTLE ORG

^aSurgery includes bypass, endarterectomy, or embolectomy.



YEAR


Schermerhorn et al. J Vasc Surg 2009;49:1472-9.

PNEC-SEATTLE ORG

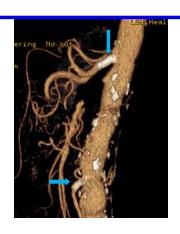
- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management

- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management

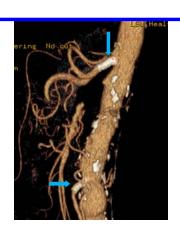
Indications

- High grade mesenteric artery stenosis or total occlusion
 - Symptomatic
 - Asymptomatic
 - >2-vessel significant disease

> 30% of the patients will develop


bowel infarct within 2-3 years

- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management

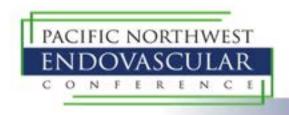

- Revascularization
 - Reportedly 1.4-1.8 vessels
- Single-Vessel revascularization
 - Adequate to relieve symptoms in most of patients
- Two-vessel revascularization
 - Lower risk of symptom recurrence and secondary re-intervention

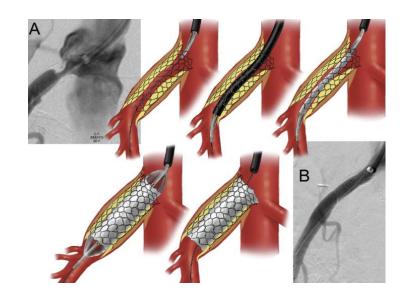
- Revascularization
 - Reportedly 1.4-1.8 vessels
- Single-Vessel revascularization
 - Adequate to relieve symptoms in most of patients
- Two-vessel revascularization
 - Lower risk of symptom recurrence and secondary re-intervention

- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management

- Access
 - Brachial
 - Femoral

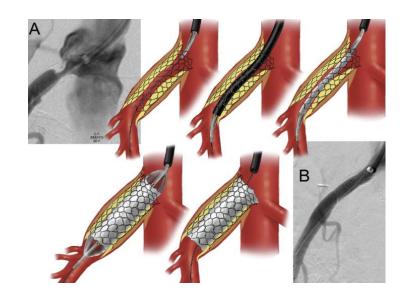
 Brachial access if sharp angulation

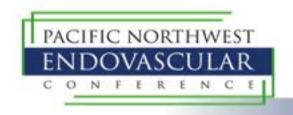

- Angle sheath and catheter
- Crossing catheter



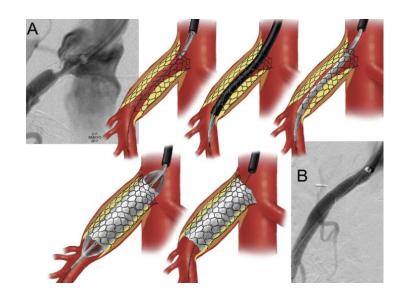
- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management

- Balloon angioplasty (PTA) alone
 - **15%**
- Primary stenting
 - **85%**
 - Less reintervention
 - Balloon expendable stentAccurate

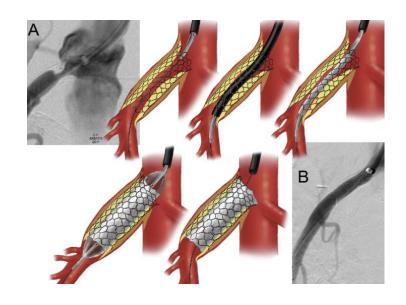

 - May post-dilate to a larger size if needed
 - May need covered stent if instent re-stenosis



- Balloon angioplasty (PTA) alone
 - **15%**
- Primary stenting
 - **85%**
 - Less reintervention
 - Balloon expendable stentAccurate

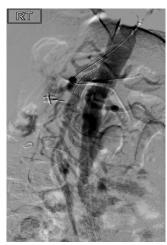

 - May post-dilate to a larger size if needed
 - May need covered stent if instent re-stenosis

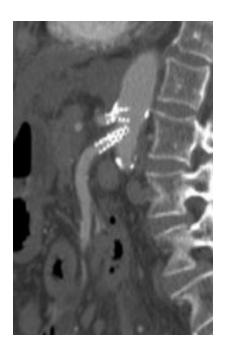
- Balloon angioplasty (PTA) alone
 - **15%**
- **Primary stenting**
 - **85%**
 - Less reintervention
 - Balloon expendable stentAccurate


 - May post-dilate to a larger size if needed
 - May need covered stent if instent re-stenosis

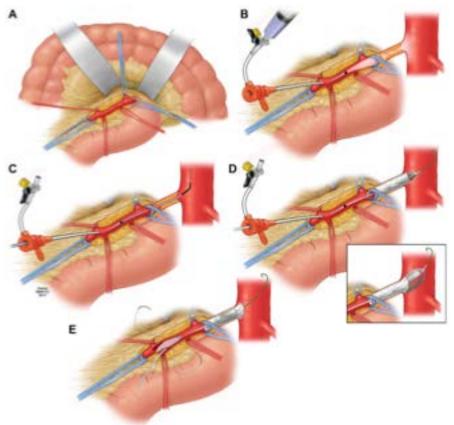
- Balloon angioplasty (PTA) alone
 - **15%**
- **Primary stenting**
 - **85%**
 - Less reintervention
 - Balloon expendable stentAccurate

 - May post-dilate to a larger size if needed
 - May need covered stent if instent re-stenosis


- When to intervene
- How many vessels need to be treated
- Access and Crossing lesions
- PTA vs. Stenting
- Post-stenting medical management

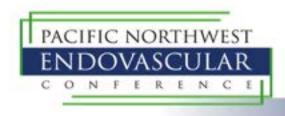


- Post-procedure medications
 - Clopidogrel: 6 weeks
 - ASA: life time



Oderich GS et al. J Vasc Surg. 2018 Mar 13. pii: S0741-5214(18)30047-8.

PNEC-SEATTLE.ORG


- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time

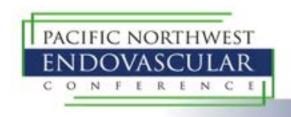
- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time

- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time

- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time

- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time

- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time



- Indications for endovascular treatment of CMI
 - Symptomatic
 - Asymptomatic with 2- or 3-vessel significant disease
- One vessel PTA/Stenting is adequate
 - Two-vessel treatment has better long-term outcomes
- Primary stenting is recommended
- Balloon expendable stent is preferred
- Post-stenting antiplatelet
 - Clopidogrel 6 weeks
 - ASA life time

References

- Schermerhorn et al. Mesenteric revascularization: management and outcomes in the United States, 1988-2006. J Vasc Surg 2009;49:1472-9.
- Clair D. Mesenteric Syndromes. In: Moore and Ahn, editors. Endovascular surgery. 4th ed. Philadelphia: Elsevier Saunders; 2011. p. 367-83.
- Peck MA, Conrad MF, Kwolek CJ, LaMuraglia GM, Paruchuri V, Cambria RP. Intermediate-term outcomes of endovascular treatment for symptomatic chronic mesenteric ischemia. J Vasc Surg 2010;51(1):140-7.

